

THE UNIVERSITY OF TEXAS AT ARLINGTON

Joe Coffey

Director of Overhead Transmission General Cable/Prysmian Group

High Temperature Conductor Rating Considerations

IEEE Standard 738 Heat Balance Equation

$$q_{con} + q_{rad} = q_{solar} + I^2 R$$

Scenarios for current/temperature relationship

1590.0 kcmil 54/19 Falcon/ACSS

Frequency:

60 Hz

Ambient Temperature:

20-49 °C

Emissivity: Absorptivity: 0.24-0.9

0-6 ft/s **Crosswind Velocity:**

0.0 - 1.0

90° Wind Angle:

Total Solar Radiated Heat:

98.4 W/ft²

Northern Latitude: 32 °

Azimuth of Line:

90 ° (E-W)

774 ft **Elevation:**

Atmosphere:

clear

Month and Day of Year: July 1

Maximum Operating Temp 200°C (392°F)

Time of Day: 12 PM

IEEE 738 equations show ampacity= ??? Amps

Ambient Temperature: vary from 49°C (120°F) to 20°C (68°F)

Sensitivity
29°C (52°F) change
equals 7.6% change
in ampacity rating

Worst Case:
Winter rating (20°C)
used when actual
Temp=49°C
Temp Conductor=

225°C actual vs. 200°C expected

Cross Wind Velocity: vary from 0 ft/s to 6 ft/s

Sensitivity

0 to 2ft/s = +12.9%

0 to 4ft/s = +27.9%

0 to 6ft/s = +40.3%

Worst Case:

Wind stops blowing for period of time on line rated @6ft/s

Temp Conductor= 340°C actual vs.

200°C expected

Absorptivity (α): vary values from 1.0 to 0.0

Sensitivity

100% change in value equals 5.4% change in ampacity rating

Worst Case:

Assume no sun absorbed when actual $\alpha = 1.0$

Temp Conductor= 218°C actual vs. 200°C expected

Emissivity (E): vary from 0.24 to 0.9

Sensitivity

0.66 change in value equals 26.1% change in ampacity rating

Worst Case:

"shiny" new line rated with £=0.9

Temp Conductor= 326°C actual vs. 200°C expected

Summary of impact of variables

Summary of impact of variables at 90°C vs. 200°C

Line Rating Sensitivity Comparison

EPRI test results from Texas. What value to use?

Age	Measured		
(Years)	Emissivity	Location	Conductor
0	0.24	-	ACSR-Drake
3	0.25	Amarillo	ACSS-Falcon
32	0.32	DFW	ACSR-Bittern
32	0.45	Austin	ACSR-Drake

Lower Pollution equals lower emissivity

For HTLS Conductors, Emissivity Matters.

If actual $\mathcal{E} = 0.3/\alpha = 0.3$, what would conductor temp be with commonly used rating methodology \mathcal{E}/α value sets?

Line Rating observations for High Temperature Lines

- Emissivity and Wind Speed are major contributors
- Emissivity is measurable
- Actual emissivity values are likely lower than commonly used values
- HTLS conductor ratings are particularly sensitive to emissivity changes.
- Consistency of line rating "philosophy" should be reevaluated for HTLS conductors vs. traditional ACSR

